(3/m+1)=(1/m^2-1)

Simple and best practice solution for (3/m+1)=(1/m^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/m+1)=(1/m^2-1) equation:


D( m )

m^2 = 0

m = 0

m^2 = 0

m^2 = 0

1*m^2 = 0 // : 1

m^2 = 0

m = 0

m = 0

m = 0

m in (-oo:0) U (0:+oo)

3/m+1 = 1/(m^2)-1 // - 1/(m^2)-1

3/m-(1/(m^2))+1+1 = 0

3/m-m^-2+1+1 = 0

3*m^-1-m^-2+2 = 0

t_1 = m^-1

3*t_1^1-1*t_1^2+2 = 0

3*t_1-t_1^2+2 = 0

DELTA = 3^2-(-1*2*4)

DELTA = 17

DELTA > 0

t_1 = (17^(1/2)-3)/(-1*2) or t_1 = (-17^(1/2)-3)/(-1*2)

t_1 = (17^(1/2)-3)/(-2) or t_1 = (17^(1/2)+3)/2

t_1 = (17^(1/2)-3)/(-2)

m^-1-((17^(1/2)-3)/(-2)) = 0

1*m^-1 = (17^(1/2)-3)/(-2) // : 1

m^-1 = (17^(1/2)-3)/(-2)

-1 < 0

1/(m^1) = (17^(1/2)-3)/(-2) // * m^1

1 = ((17^(1/2)-3)/(-2))*m^1 // : (17^(1/2)-3)/(-2)

-2*(17^(1/2)-3)^-1 = m^1

m = -2*(17^(1/2)-3)^-1

t_1 = (17^(1/2)+3)/2

m^-1-((17^(1/2)+3)/2) = 0

1*m^-1 = (17^(1/2)+3)/2 // : 1

m^-1 = (17^(1/2)+3)/2

-1 < 0

1/(m^1) = (17^(1/2)+3)/2 // * m^1

1 = ((17^(1/2)+3)/2)*m^1 // : (17^(1/2)+3)/2

2*(17^(1/2)+3)^-1 = m^1

m = 2*(17^(1/2)+3)^-1

m in { -2*(17^(1/2)-3)^-1, 2*(17^(1/2)+3)^-1 }

See similar equations:

| 9/(y+6)=8/(y-8) | | 3(x+4)-12=4x+5 | | (1/x)-(7/3)=-11/6 | | -6(x+6)+5=-31 | | K^4=12-k^2 | | 2(1-3x)=3x-16 | | 4e+3=2e^2 | | 5(2y)+4y=19600 | | -3-9=4x+7-3x | | -18+38=-5(x+8) | | 6x^4-4x^3+11/-6x^4 | | 4x+8-3x=17 | | 6g^3-15g^2+6g=0 | | 2X*3=6125 | | 9x-12=16-5x | | 8w-12w=28 | | n^2-2n-73=0 | | -1+23=m-8 | | -4(x-6)=-8(-3+5x) | | 2N-6=N+7 | | -4(p+1)-6p=6 | | (3/x+4)-(5/x+6) | | 64-y+10y=235 | | -9f=88-f | | 4(2x+1)=3x-7x | | 193-3x=33x+24 | | 11+25=-4(4x-9) | | 3(4x+9)=-50+65 | | x=47-15 | | (1+2k)(8)=33 | | 10-(3z-3)=3-4z | | 47-y+10y=182 |

Equations solver categories